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Putative global minima for the Thomson problem of N charges on a sphere are located for selected sizes in
the range N�4352. For small sizes most global minima simply exhibit 12 disclinations. However, around
N=400 extended dislocations are common, where a heptagon lies between two pentagons in the Voronoi
representation. At larger sizes around N=1000 twinned grain boundaries are favorable and then between about
N=1000 and 2000 “rosette” defects appear, containing a central pentagon surrounded by five heptagons
alternating with five additional pentagons in the Voronoi representation. Structures with 12 rosettes and I point
group symmetry are particularly low in energy for N=1632 and 1902. Above N=2000 the lowest minima
located generally contain irregular grain boundaries, sometimes with a few rosette defects. Face dual carbon
clusters corresponding to Ih local minima at N=432 and 582 are characterized as local minima for C860 and
C1160.
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I. INTRODUCTION

Many properties of atomic and mesoscale systems are de-
termined by the presence of defects, especially the response
to external forces, such as a mechanical load or an electric
field.1,2 For a spherical topology the presence of defects is
unavoidable from geometrical considerations alone. If the
number of neighbors for a particle in such a surface is writ-
ten as C, then the topological or disclination charge is de-
fined as Q=6−C. Euler’s theorem states that the total discli-
nation charge must be 12 for a triangulated structure defined
by a set of particles constrained to a spherical surface. How-
ever, geometry alone does not tell us what the energetically
favorable defect structures might be, and characterizing these
arrangements is likely to play a key role in understanding
and predicting the mechanical, optical, and electrical proper-
ties of such materials. Practical applications include the
packing of spherical viruses,3,4 fullerene structures,5,6 multi-
electron bubbles in superfluid helium,7,8 cell surface layers in
prokaryotic organisms,9,10 “colloidosomes,”11–13 coding
theory,14,15 colloidal silica microspheres,16 superconducting
films,17,18 micropatterning of spherical particles,19 and lipid
rafts deposited on vesicles.20

The simplest way for a triangulated lattice to achieve the
required disclination charge is for 12 particles to form five-
coordinate disclinations. However, packings with lower en-
ergy can be realized for larger systems via additional defects,
which help to lower the strain energy. For example, disloca-
tions may be formed from adjacent five-coordinate and
seven-coordinate particles.6,21,22 The importance of defects in
explaining and predicting observable properties is high-
lighted in previous studies of disclinations,23,24

dislocations,6,18,22,25 and grain-boundary scars.11,24,26 For ex-
ample, dislocations are known to be important in the me-
chanical relaxation of carbon nanotubes, where a bond rota-
tion in a hexagonal lattice wrapped around a cylindrical
surface produces pentagon-heptagon pairs.27 Dislocations

may also contribute to the incorporation of new material into
the surface layers of bacteria,28 while disclinations may be
involved in cell division.29

II. MODEL

Unfortunately, many systems of contemporary interest
that exhibit spherical topologies are mesoscopic and cannot
be modeled with a fully atomistic representation. However,
useful insights have been obtained from analysis of the Th-
omson problem,30 which consists of N unit charges con-
strained to a sphere with potential energy �atomic units�

V = �
i�j

1

�ri − r j�
,

where the radius is �r��=1 for all particles �. This model was
introduced by J. J. Thomson in 1904 to analyze atomic struc-
ture and has since been used as a testing ground for global
optimization algorithms.25,31–38 In a recent contribution39 we
employed the basin-hopping algorithm40–44 to identify many
improved candidates for global minima of the Thomson
problem for N�400. These structures included a variety of
interesting defects. In the present contribution we describe
trends in the observed defect structure up to N=4352.

III. RESULTS

The global potential energy minimum defines the equilib-
rium state of a classical system at sufficiently low tempera-
tures and its influence often extends as far as a melting
transition.44 Characterizing this structure is therefore an im-
portant first step in many investigations throughout molecu-
lar science. The problem of finding the global minimum rap-
idly becomes more difficult as the system size increases,
since the number of local minima increases exponentially
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FIG. 1. �Color online� Voronoi representations of the lowest minima located for N=400,410, . . . ,570 and N=1500, 2000, and 2500. The
pentagons, hexagons, and heptagons are colored red �medium gray�, green �light gray�, and blue �dark gray�, respectively.
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with the number of particles.34,45,46 The rate of increase with
size for the Thomson problem is not as large as for clusters
bound by shorter-range potentials because the long-ranged
Coulomb potential supports fewer local minima on the po-
tential energy surface for any given size.47–49 Nevertheless,
the larger sizes considered in the present work pose a signifi-
cant challenge. We first considered clusters with
N=1500, 2000, and 2500. In each case we performed five
separate basin-hopping runs starting from different randomly
constructed arrangements for N particles on a sphere, using
the GMIN program.50 50 000 basin-hopping steps were first
performed at a fixed temperature of T=0.045, followed by an
additional 50 000 steps at T=0.06. The energy range spanned
by the lowest minima located in the five runs was 0.4 for
N=1500, 1.0 for N=2000, and 0.6 for N=2500. The lowest
minima improve upon previous results51 by 4.6, 9.2, and
18.4 a.u., respectively. Our results therefore represent signifi-
cantly better structures, but it is still possible that future stud-
ies will find slightly lower minima.

The lowest minima located at each size are illustrated in
Fig. 1 using a Voronoi construction, based on polygons that
partition the surface into regions where each point is closest
to a given ion. In each case all the low-lying minima feature
a number of “rosette” defects, where a central pentagon is
surrounded by five heptagons alternating with five additional

pentagons. The topological charge is equal to 12 for each
structure �Table I�, including the contributions from extended
defects25,26,39 consisting of pentagon/heptagon sequences that
might be described as embryonic grain boundaries.24,52

Structures with 12 rosette defects and ideal I or Ih point
group symmetry can be constructed using the standard trian-
gulation number approach3 by deleting a ring of sites around
the 12 vertices of a regular icosahedron. The original con-
struction produces lattices with point group I or Ih described
by two integers, h and k, which correspond to displacements
on a triangular lattice.3 The number of vertices is then
10�+2 where �=h2+hk+k2 is the triangulation number.
Here we denote the geometry obtained by deleting a ring of
sites by �h ,k�− and the total number of vertices in this con-
struction is 10�−58. Full Ih symmetry results if h=0, k=0,
or h=k. Such structures have been considered before by
Pérez-Garrido and Moore,22 who constructed systems with
icosahedral symmetry by removing sets of charges around 12
disclinations. They are also mentioned in a treatment that
employs continuum elastic theory,52 where families of “pen-
tagonal buttons” are described with reference to unpublished
work by A. Toomre.

In the present contribution we have considered all the
systems based on 12 rosettes with I or Ih symmetry for sys-
tems with N�4352, corresponding to �0,21�−. There are 148

TABLE I. Lowest minima located for the Thomson problem at N=400,410, . . . ,570 and N=1500, 2000,
and 2500. The number of polygons refers to faces with 5, 6, and 7 sides in the corresponding Voronoi
construction.

N
Energy
�a.u.�

�2E − N2�
N3/2

Point
Group

Polygons

5 6 7

400 75582.4485122 −1.104388 T 12 388 0

410 79465.7432085 −1.104392 C2 20 382 8

420 83446.9975989 −1.104394 C2 24 384 12

430 87526.1187028 −1.104422 C2 16 410 4

440 91703.3295563 −1.104428 D2 24 404 12

450 95978.4413762 −1.104461 C2 22 418 10

460 100351.7631087 −1.104458 T 24 424 12

470 104822.8863243 −1.104508 S6 24 434 12

480 109392.3186786 −1.104513 C1 24 444 12

490 114059.8425561 −1.104521 C2 24 454 12

500 118825.4625421 −1.104535 C2 24 464 12

510 123689.3168005 −1.104532 C2 24 474 12

520 128651.1439930 −1.104563 C2 22 488 10

530 133711.2618723 −1.104574 C2 24 494 12

540 138869.5942030 −1.104582 C2 24 504 12

550 144126.0927100 −1.104598 C2 24 514 12

560 149480.8992800 −1.104602 D2 24 524 12

570 154933.7024553 −1.104642 Th 24 534 12

1500 1092900.8642237 −1.105062 C1 66 1380 54

2000 1950575.6389387 −1.105162 C1 58 1896 46

2500 3055924.2131105 −1.105213 C1 61 2390 49
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such structures in this size range �excluding enantiomers�
and local minimization with icosahedral symmetry enforced
by a projection operator enabled us to obtain I or Ih symme-
try stationary points for each possibility. However, for
smaller sizes some of these structures correspond to saddle
points rather than minima, as indicated by collapse to lower
energy on tight optimization with no symmetry constraints.
We finally characterized 26 minima with Ih symmetry and
113 with I symmetry.

To determine whether a 12-rosette motif is ever a likely
candidate for the global minimum we conducted basin-
hopping runs at fixed temperatures of T=0.045 and 0.06 for
the sizes corresponding to �h ,0�−. At four of these sizes
minima with I symmetry lie lower than Ih structures, namely,
N=1632, 1902, 3552, and 4352, for �7,8�−, �6,10�−, �5,16�−,
and �9,15�−, respectively. The number of basin-hopping
steps per temperature varied from 500 000 for the smallest
cluster to 50 000 for N=4352; results are summarized in
Table II. Aside from the �7,8�− and �6,10�− constructions
basin-hopping located significantly lower minima than pre-
viously reported,51 with improvements up to several atomic
units in magnitude. For N=1632 and 1902 the I structure
remained the lowest one found even after more than 200 000
basin-hopping steps �Fig. 2�. It is still possible that lower
minima exist; for N=1382 a lower minimum was only lo-
cated after about 150 000 steps. Nevertheless, it seems likely
that the rosette motif will play an important role in determin-
ing the equilibrium properties of Thomson clusters in this
size range and is likely to be found in experimentally realiz-
able systems with spherical topology. All the structures de-
scribed in this report will be made available for download
from the Cambridge Cluster Database.53

IV. DISCUSSION

Using the systematic global optimization results in Ref.
39 and the present results for selected sizes we can identify
the trends for favored defect structures in more detail
�Fig. 3�. Most of the putative global minima for N�300
simply have 12 disclinations, manifested as 12 isolated
five-membered rings �though not necessarily symmetrically
arranged� in the Voronoi construction.39,53 Indeed, for
12�N�100 purely geometric factors can account for most
of the few cases of presumed global minima that do not have
exactly 12 isolated five-membered rings.33,54 For N�300,
and especially as we approach N=400, heptagons become
increasingly common as a way to relieve strain from the
dislocations, in agreement with the predictions of continuum
elastic theory.17,18,52 It was predicted that for N�530 iso-
lated five-membered rings without an accompanying
pentamer/heptamer defect should become unfavorable.18 Ex-
tended dislocations, consisting of one heptagon and two
neighboring pentagons in the face dual, were identified as
favorable defects in this regime in our previous report.39 For
N=582 and 752, where we have some confidence that we
have found the true global minimum, the favored structures
contain 12 of these extended dislocations �Fig. 2�, giving 24
pentagons and 12 heptagons in the Voronoi representation.
The lowest minimum found for N=942 contains 12 copies of
a twinned grain boundary, where two heptagons share an
edge in the Voronoi representation, which was also identified
in previous work.39

To identify the transition region beyond which isolated
disclinations are unfavorable we conducted further global
optimization runs for N=400,410, . . . ,560,570. In each case

TABLE II. Lowest minima located for the Thomson problem at sizes corresponding to stable I or Ih

minima from the �0,k�− series containing 12 rosette defects. The energy of the icosahedral minimum �EI� and
the lowest minimum �E0� located from basin hopping are reported in each case in atomic units, together with
the total number of basin-hopping steps.

N
EI

�12 rosettes� E0 EI−E0

�2E0 − N2�
N3/2

Point Group

Polygons

5 6 7

432 88360.9238182 88353.70968196 7.21414 −1.104425 D3 24 395 12

582 161613.2267094 161607.1761347 6.05057 −1.104632 D3 24 546 12

752 271365.3818886 271360.9889196 4.39297 −1.104754 C2 24 716 12

942 427713.0332165 427710.4477820 2.58543 −1.104844 C3 36 882 24

1152 641951.6761546 641950.0018189 1.67434 −1.104957 C2 36 1092 24

1382 926576.7160510 926576.1175607 0.59849 −1.105020 C1 57 1280 45

1632 1295282.2378931 1295282.2378931 0 −1.105112 I 72 1500 60

1902 1762965.4579074 1762965.4579073 0 −1.105162 I 72 1770 60

2192 2345723.5209933 2345722.2993502 1.22164 −1.105163 C1 49 2106 37

2502 3060847.3069053 3060843.5371385 3.76977 −1.105209 C1 75 2366 61

2832 3926833.9521952 3926826.0886472 7.86355 −1.105253 C1 66 2712 54

3182 4963378.7006027 4963365.9063241 12.8738 −1.105286 C1 68 3060 54

3552 6191369.8423152 6191357.2579633 12.4722 −1.105317 C1 71 3422 59

3942 7632923.4474897 7632895.0289372 28.4186 −1.105350 C1 73 3808 61

4352 9311298.8725923 9311276.2839985 22.5886 −1.105369 C1 82 4202 68
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three runs were started from different random starting con-
figurations and continued until all three runs had located the
same lowest minimum. This procedure required up to
200 000 basin-hopping steps in some cases. Previous expe-
rience with many different systems, including cross valida-
tion of basin-hopping results by other methods, suggests that
the resulting structures are good candidates for the true glo-
bal minima. However, we note that exceptions could arise for
multifunnel potential energy surfaces, as documented in pre-
vious work.42,43,55 The results are recorded in Table I and
selected structures are illustrated in Fig. 1. Nine of these
structures improve upon previous results51 by between 10−4

and 18 a.u. No isolated disclinations are found in this data set
for N�520. It is also noteworthy that most global minima
have nontrivial point groups, in agreement with the sugges-
tion that higher-symmetry structures are generally associated
with particularly high or particularly low energies.44,56,57 We
expect this trend to extend to larger systems with defects
separating into 12 distinct groups related by exact or
approximate44,56,57 symmetry operations. This pattern may
also help to minimize strain, in an analogous fashion to the
pentagon “repulsion” rule for fullerenes.58

Most of the defects for N=1152 are again twinned grain
boundaries, but we also see a defect with an alternating ar-

FIG. 2. �Color online� Voronoi representations of the lowest minima located for selected sizes at which local minima with I or Ih

symmetry exist for structures with 12 rosettes. The pentagons, hexagons, and heptagons are colored red �medium gray�, green �light gray�,
and blue �dark gray�, respectively.
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rangement of three pentagons and two heptagons. The first
putative global minimum in this set to exhibit rosettes occurs
at N=1382, where the lowest structure located has an addi-
tional twinned grain boundary. The energy difference be-
tween icosahedral structures and the lowest minimum is
smallest for 1000�N�2000 �Table II�. Above this size the
lowest structures located have irregular grain boundaries, and
some also possess a few rosette defects �Fig. 2�. These larger
structures are unlikely to be the true global minima but we
have performed sufficient sampling to be confident that they
are representative of the lowest-lying structures.

Models based on continuum elastic theory have previ-
ously been applied to predict trends in defect structure by
focusing on screened defect-defect interactions.24,52 Here the
ratio of the disclination core energy to the Young’s modulus
plays a key role.52 In the limit of large core defect energy the
theory suggests that 12 disclinations will be favored. How-
ever, for smaller defect core energies structures with 12 finite
grain boundaries are expected to lie lower in energy.52 For
some parameter ranges in this model the grain boundaries
exhibit a tendency to spiral, while branching was observed
for small core defect energies where the number of defects
proliferates.52 In the present calculations curvature is appar-
ent in some of the grain boundaries for N=2502 �Fig. 2�,
while branching occurs for N=3942. However, we have not
found any structures that could be described as rosettes �or
pentagonal buttons52� associated with additional radial dislo-
cations. It has also been suggested59 that low-energy arrange-
ments might favor dislocations arranged on increasingly
straight lines at larger sizes. This regime might occur at sizes
beyond those considered in the present work. We have also
fitted the quantity �2E−N2� /N3/2 for the putative global
minima located in the present work to functions involving
inverse powers of N. The fits �data not shown� indicate that
our results do not correspond to large enough N for the very
large system limit of continuum elastic theory to be
reached.26 Further changes in the favored defect structures
corresponding to different levels of organization60 might be
observed before this limit is reached.

Experimental results for self-assembled beads in “colloi-
dosomes” have indicated the formation of grain-boundary
scars for systems containing more than around 360
particles,11 where our results39 suggest that pentagon-
heptagon-pentagon extended dislocations are the most favor-
able form of defect for the Thomson problem. Hence it
seems likely that the rosette motif will appear at still larger
sizes in experimental systems that exhibit spherical topology.

The relative stability of icosahedral structures containing
12 rosettes in the size range between 1000�N�2000 natu-
rally prompts us to consider the stability of the face dual
carbon clusters, which contain 20�−120 atoms. Pérez-
Garrido has previously reported results for such structures

FIG. 4. �Color online� Geometry-optimized C860 �top� and C1160

�bottom� clusters. Views are shown down the approximate C2 �left�
and C5 �right� axes with pentagonal rings highlighted in red �light
gray�.
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FIG. 3. �Color online� Plot of the number of
pentagons �+� and heptagons �� � in the Voronoi
representations of the lowest known minima for
the Thomson problem. Results for N�400 are
taken from the structures reported in Ref. 39. The
results for N�400 correspond to global optimi-
zation results for the sizes in Table II where
stable minima exist with I or Ih symmetry for the
�0,k�− series based on 12 rosette defects, along
with the results from N=400 to N=570 in
Table I.
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within the Hückel approximation and using an empirical po-
tential with the carbon atoms constrained to the surface of a
sphere.6 In the present work we have performed energy mini-
mization without constraints for the clusters C860 and C1160,
starting from idealized face dual structures with Ih symmetry
corresponding to �0,7�− and �0,8�−. The electronic structure
was treated using density functional theory, as implemented
in the ONETEP package,61 with the PBE functional,62 norm-
conserving pseudopotentials,63 and a plane-wave basis cutoff
at 500 eV. Periodic boundary conditions were employed for a
cubic box of side length 100 a.u. We were able to converge
the geometries to a root-mean-square gradient of about
3�10−3 a.u. for C860 and 7�10−4 a.u. for C1160. The clus-
ters relax significantly from the starting geometries where all
the atoms lie on a sphere. In particular, there is significant

corrugation around each rosette site and slight deviations
from perfect Ih symmetry can be detected �Fig. 4�. Neverthe-
less, the corresponding structures represent local minima in
each case.

The present results therefore illustrate how systematic
global optimization can complement coarse-grained analytic
models to identify structural trends at an atomic level of
detail. It seems likely that the Thomson problem will con-
tinue to provide new insight into the behavior of a wide
range of systems with spherical topology.
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